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ARTIFICIAL NEURAL NETWORK FOR NEURAL ACTION 

POTENTIAL DETECTION 

ABSTRACT 

Neural action potentials are electrical signals generated by neurons and are crucial for 

understanding the functioning of the nervous system. The project aims to develop a 

system that utilizes artificial neural networks (ANNs) for the detection of neural action 

potentials. 

The project focuses on designing filters using ANNs in MATLAB to accurately detect 

and classify neural action potentials. The filters are trained using labelled data, where 

the input represents the electrical signals and the output indicates whether an action 

potential is present or not. The neural network learns to recognize patterns in the 

signals and makes predictions based on the training data. 

The MATLAB program implements preprocessing techniques to remove noise and 

artifacts from the collected data. Relevant features are extracted from the preprocessed 

data to capture the characteristics of action potentials. These features include 

amplitude, duration, shape, and frequency content of the 

electrical signals. 

Overall, the project seeks to contribute to the development of accurate and efficient 

methods for neural action potential detection using artificial neural networks in 

MATLAB. The results obtained from this project can enhance our understanding of 

neural activity and have implications for various fields, including neuroscience, 

neurology, and brain-computer interfaces. 

Keywords (Artificial.  Design Neural network.  Implementation Neural network .Neural 

Action. Potential detection) 
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Chapter One 

1.1 Introduction 

The human nervous system, a complex network of interconnected neurons that work 

together to form our thoughts and transmit signals to cause movements, and bodily 

functions, these signals travel in the form of action potentials. Understanding the 

dynamics of action potentials not only unveils the secrets of neural communication but 

also opens doors to transformative applications in medical diagnosis and therapeutic 

interventions. These signals travel along the length of nerve cells, known as neurons, 

and are responsible for transmitting sensory information, controlling movement, and 

regulating bodily functions. The speed at which nerve signals travel can vary 

depending on the type of nerve and the conditions in the body. Generally, nerve signals 

can travel at speeds ranging from approximately 1 meter per second to over 100 meters 

per second. This variation in speed is due to factors such as the diameter of the nerve 

fiber, the presence of a protective myelin sheath around the nerve, and the temperature 

of the surrounding environment. Overall, the process of nerve signal transmission is a 

remarkable aspect of the human body's ability to perceive and respond to the world 

around us. 

1.2 Problem statement 

Recognition of neural activity in a noisy environment is a critical point for scientists. 

The bandpass filter is an essential and most straightforward method for neural spike 

classification; however, this approach still very sensitive to the magnitude variances 

among the neural spike to be beneficial in biomedical applications. 

1.3 Objective 

Creating an enhanced bandpass filter using an artificial neural network to improve the 

neural spike detection and sorting based on velocity selective recording method. The 

proposed filter rejects the noise background and improves the selectivity depend on 

fibre conduction velocity. 
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1.4 Biosignals 

In the realm of biomedical signals and sensors, a biosignal is a representation of a 

physiological phenomenon [1], regardless of its specific nature. Since there is a nearly 

unlimited number of physiological mechanisms of interest, the number of possible 

biosignals is very large. In the broadest sense, the variety of biosignals extends from a 

visual inspection of the patient up to signals recorded from the human body using 

sensors, e.g., electrocardiography, The extensive diversity of biosignals is most evident 

in the various methods of classifications, As a first classification method, a biosignal's 

existence could be take as a basis of classification, in particular there are permanent 

biosignals and induced biosignals. 

[2] 

Permanent biosignals such as electrocardiographic signal exist without any artificial 

impact, trigger, or excitation from outside the body and are available at any time, the 

source of the biosignal is already inside the body. 

Induced biosignals such as electric plethysmography are biosignals that are artificially 

triggered, excited, or induced. In contrast to permanent biosignals, induced biosignals 

exist roughly for the duration of the excitation. That is, as soon as the artificial impact 

is over, the induced biosignal decays with a certain time constant determined by the 

body properties. 

The second classification method considers the dynamic nature of biosignals. 

Accordingly there are quasi-static biosignal and Dynamic biosignals [1]. 

Quasi-static biosignals carry information in their steady-state level, where changes 

over time are minimal and exhibit a gradual nature. E.g. the core body temperature. 

Dynamic biosignals undergo significant changes in the time domain, conveying the 

physiological information of interest through dynamic processes. E.g the beat-to-beat 

changes of the heart rate. 

The third classification method relies on the origin of the biosignals as a basis for their 

classification [3]. The most prominent biosignals: 

1. Electric biosignals: These are generated by electrical activity in the body, such 

as the electrocardiogram (ECG), electroneurogram (ENG), 

electroencephalogram (EEG), and electromyogram (EMG). 
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2. Magnetic biosignals: These are generated by non-stationary currents in the 

body, such as the magnetocardiogram (MCG). 

3. Mechanic biosignals: These are generated by body deformations or local body 

skin vibrations, such as the mechanorespirogram. 

4. Optic biosignals: These are generated by light absorption and scattering related 

to propagation volume and medium, such as the optoplethysmogram. 

5. Acoustic biosignals: These are generated by sound waves produced by the 

body, such as heart sounds, lung sounds, and snoring sounds. 

6. Chemical biosignals: These are generated by chemical reactions in the body, 

such as cortisol levels. 

7. Thermal biosignals: These are generated by changes in body temperature, such 

as body core temperature. 

1.5 Action Potentials 

Neuron cells have different ion concentrations at the intracellular and extracellular 

space due to the selective permeability to different ions. The difference in ion 

concentrations causes an electrochemical voltage difference across the membrane, 

called the membrane potential. Under normal physiological conditions, the interior of 

the cell is negative with respect to the extracellular space without a net electric current 

flowing through the membrane 

[4]. 

The membrane potential shifts from resting state where the inside of the cell is 

negatively charged compared to outside, shifting to depolarization state where a 

stimulus such as change in voltage causes ion channels (often sodium channels) to 

open and sodium ions rush into the cell making it less negative, if this depolarization 

reaches a threshold level it triggers the next stage, which is rising phase where the 

voltage-gated sodium channels open rapidly allowing a large influx of sodium ions, 

the membrane potential rapidly becomes positive, leading to the peak of the action 

potential, next stage is re-polarization in which the voltage-gated sodium channels 

close and voltage-gated potassium channels open moving potassium ions out of the 

cell, restoring negative charge inside and the membrane potential returns to the resting 

state, another stage is undershoot or hyper-polarization which happens in some cells 

where the membrane potential briefly becomes more negative than the resting state. 
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Figure 1.1 Action potential [5] 

1.6 Neuron Structure 

Neurons are the basic building blocks of the nervous system, and they play a crucial 

role in transmitting information throughout the body. The structure of a neuron can be 

divided into several key components [6]: 

1. Cell Body (Soma): The cell body contains the nucleus and other organelles 

necessary for the neuron to function. It also integrates the incoming signals 

from other neurons. 

2. Dendrites: These are the treelike extensions that project from the cell body. 

Dendrites receive signals from other neurons and transmit them toward the cell 

body. 

3. Axon: The axon is a long, single extension that transmits electrical signals 

away from the cell body and toward other neurons, muscles, or glands. 
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4. Myelin Sheath: In some neurons, the axon is surrounded by a myelin sheath, 

which is made up of specialized cells called Schwann cells. The myelin sheath 

helps to insulate the axon and increases the speed of signal transmission. 

5. Axon Terminals: At the end of the axon, there are small branches known as 

axon terminals. These terminals release neurotransmitters, which are chemical 

messengers that transmit signals to other neurons or to muscle cells. 

The structure of neurons allows for the transmission of electrical and chemical signals 

across the nervous system, enabling functions such as sensation, movement, and 

cognition. 

 

1.7 Recording neural signals 

Electroneurography (ENG) is a technique used to record and analyze the electrical 

activity of nerves and muscles. It involves placing electrodes on the skin or directly on 

the nerve to measure the electrical signals generated by the nerve fibers. These signals 

can be used to diagnose nerve and muscle disorders, monitor nerve function during 

surgery, and study the physiology of the neuromuscular system. 

Figure1.2 NeuronStructure[6] 
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There are many different Neuron signals that each have a wide range of different 

characteristics, such as having a different range of frequencies and amplitudes that 

underscore the varied nature of information processing within the nervous system [7], 

such as 

– Electro-EncephaloGraphy (EEG) uses non-invasive surface electrodes placed on 

the scalp to record Summed post-synaptic potentials, this signal has a bandwidth 

of <100Hz with a very low spacial resolution of 3 cm, signal amplitude of 10-100 

μV. 

– Electro-CorticoGraphy (EcoGs): uses Moderately Invasive implanted (minute-

penetrating) surface electrodes placed on the cortical surface, records 

synchronized postsynaptic potentials, has a bandwidth of 0.5-200Hz with a low 

spacial resolution of 0.5 cm, and a signal amplitude <100μV. 

– Local Field Potentials (LPFs): uses Moderately Invasive Metal/silicon 

microelectrode placed in the brain, records Synchronized postsynaptic potentials, 

has a bandwidth of <200Hz with a moderate spacial resolution of 1 mm, and a 

signal amplitude of <5mV. 

– Extracellular Action Potentials (EAPs): uses Invasive Metal/silicon 

microelectrode to sense action potentials in the brain, has a bandwidth of 0.17 kHz 

with a high spacial resolution of 0.2 mm, and a signal amplitude of <500μV. 

1.8 Challenges of recording neural signals 

Recording ElectroNeuroGrams (ENG) can be a complex process, and there are several 

important challenges associated with obtaining accurate and reliable recordings. Some 

of the most significant challenges include: 

1. Signal Interference: The recording of ENG can be affected by various sources 

of interference, such as electrical noise from surrounding equipment, 

movement artifacts, and physiological signals from other nearby muscles. This 

interference can reduce the signal-to-noise ratio and make it challenging to 

obtain clear and accurate recordings. 

2. Electrode Placement and Contact Impedance: Ensuring proper placement of 

electrodes and maintaining good contact impedance between the electrode and 

the skin is crucial for obtaining high-quality ENG recordings. Poor electrode 
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contact can lead to increased electrical noise and distorted signals, making it 

difficult to interpret the recorded data. 

3. Signal Amplification and Filtering: Amplifying and filtering the raw ENG 

signals is essential to extract the relevant neural activity while reducing 

background noise. However, selecting the appropriate amplifier gain and filter 

settings can be challenging, as amplifying the signal too much can lead to 

saturation, while insufficient amplification may result in weak or indistinct 

signals. 

4. Patient Factors: Patient-related factors, such as skin impedance variations, 

movement artifacts, and individual anatomical differences, can significantly 

impact the quality of ENG recordings. Patients with certain medical conditions 

or anatomical abnormalities may present additional challenges for acquiring 

accurate neural signals. 

5. Data Interpretation: Once the ENG signals are recorded, accurately interpreting 

the data requires specialized expertise and may be challenging, particularly in 

the presence of complex waveforms, artifacts, or abnormalities. 

1.9 Noise in the neural signal 

Noise in neurophysiological measurements like EMGs, NCS, or EEGs refers to 

unwanted electrical signals that interfere with the desired neural signal. Types of 

noise that can affect these recordings include: 

· Biological Noise: This comes from the physiological activity of the individual 

that is not the target of the measurement. In the case of EMG, this might be 

electrical activity from other muscles nearby that are not being studied, or 

heartbeats. For EEG, it could be eye movement or muscle activity. 

· Technical Noise: This includes any kind of interference from the equipment itself 

or from outside sources. This kind of noise is typically electrical in nature and 

can come from: 

– Thermal Noise: Resulting from the thermal motion of charges in 

conductors. 

– Shot Noise: Due to the discrete nature of electric charge. 
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– Device Noise: Created by the recording apparatus, such as amplifiers 

or electrodes. It can include low-frequency drifts or highfrequency 

noise due to electronic circuitry. 

· Environmental Noise: Interference picked up from other equipment or electronic 

devices in the environment can affect the signal. Common sources include: 

– Electrical Networks: 50/60 Hz interference from the power supply can 

be a significant source of noise. 

– Radio Frequency Interference (RFI): Comes from wireless devices and 

mobile phones. 

– Electromagnetic Interference (EMI): Can emerge from a wide range of 

sources like computers, monitors, and medical equipment in the 

vicinity. 

· Artifact: These are unintended signals that can be confused with or obscure the 

neural signal. In the case of EMG, movement artifacts can originate from the 

subject moving, whereas for EEG, electrode pops and skin potentials are 

common artifacts. 

· Aliasing: This is a specific type of distortion that occurs when the signal is 

undersampled, and higher frequencies are incorrectly mapped into lower 

frequencies within the recorded signal. 

1.10 Neural signaling applications 

The use of neural signals in medical applications is a rapidly advancing field that 

combines neuroscience, bioengineering, and clinical practice to improve patient care. 

Here is a detailed explanation of some key medical applications of neural signals: 

1. Neuroprosthetics: 

- Prosthetic Limb Control: Utilizing neural signals allows patients with 

amputations to control prosthetic limbs with their thoughts. Brain-machine interfaces 

(BMIs) decode the neural signals associated with the intention of movement and 

translate them into commands for prosthetic devices. 
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- Cochlear Implants: These devices convert sound waves into electrical signals 

that can be relayed to the auditory nerve, providing a sense of sound to a person who 

is profoundly deaf or severely hard of hearing. 

- Retinal Implants: Similar to cochlear implants, retinal implants capture visual 

signals and convert them into neural signals that can be sent to the brain, aiding those 

with certain types of blindness. 

2. Diagnostics: 

Neural signals are used in a variety of diagnostic applications, including: 

» Epilepsy: Neural signals can be used to diagnose epilepsy by identifying abnormal 

electrical activity in the brain.This can be done using a variety of methods, such as 

electroencephalography (EEG), magnetoencephalography (MEG), and functional 

magnetic resonance imaging (fMRI). 

» Sleep disorders: Neural signals can be used to diagnose sleep disorders by identifying 

abnormal sleep patterns.This can be done using a variety of methods, such as 

polysomnography (PSG), actigraphy, and sleep diaries. 

» Brain tumors: Neural signals can be used to diagnose brain tumors by identifying 

abnormal growths in the brain.This can be done using a variety of methods, such as 

MRI, CT scan, and PET scan. 

» Alzheimer's disease: Neural signals can be used to diagnose Alzheimer's disease by 

identifying abnormal changes in the brain.This can be done using a variety of methods, 

such as MRI, CT scan, and PET scan. 

Neuralsignals are also being used in a variety of new diagnostic applications, such as: 

» Mental health disorders: Neural signals can be used to diagnose mental health 

disorders by identifying abnormal patterns of brain activity.This can be done using a 

variety of methods, such as EEG, MEG, and fMRI. 

» Neurodegenerative diseases: Neural signals can be used to diagnose 

neurodegenerative diseases by identifying abnormal changes in the brain.This can be 

done using a variety of methods, such as MRI, CT scan, and PET scan. » Neurological 

disorders: Neural signals can be used to diagnose neurological disorders by identifying 

abnormal patterns of brain activity.This can be done using a variety of methods, such 

as EEG, MEG, and fMRI. 
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Neuralsignals are a powerful tool for diagnosis, and they are being used in a growing 

number of applications.As research continues, neural signals are likely to play an even 

greater role in the diagnosis of a variety of diseases and disorders. 

3. Neural Modulation Therapies: 

- Deep Brain Stimulation (DBS): DBS involves implanting electrodes within 

certain areas of the brain to produce electrical impulses that regulate abnormal 

impulses. It’s used to treat a variety of debilitating neurological symptoms, most 

commonly the debilitating symptoms of Parkinson's disease, dystonia, and chronic 

pain. 

- Vagus Nerve Stimulation (VNS): This technique is used mainly for 

treatmentresistant depression and intractable epilepsy 

4. Brain-Computer Interfaces (BCIs): 

BCIs can provide communication and control capabilities to individuals with severe 

motor disabilities resulting from ALS, cerebral palsy, stroke, or spinal cord injury. 

Sensors placed on the scalp (or in some cases, implanted) record brain signals, which 

are then decoded by a computer to perform certain tasks. 

5. Clinical Research: 

Neural signals are crucial in clinical research for understanding brain functions and the 

pathophysiology of various neurological disorders. This research can lead to the 

development of new diagnostic tools and treatments. 

6. Rehabilitation: 

Neurofeedback is a type of biofeedback that uses real-time displays of brain activity—

most commonly EEG—to teach self-regulation of brain function. It is used in the 

treatment of ADHD, depression, anxiety, epilepsy, and PTSD. 

7. Pain Management: 

Transcutaneous Electrical Nerve Stimulation (TENS) uses low-voltage electrical 

current for pain relief, which is believed to work by blocking the transmission of pain 
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signals along nerves and/or stimulating the production of endorphins, the body's 

natural painkillers. 
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Chapter Two 

2.1 Electrical Neural Interfaces 

Electrical neural interfaces provide a connection between an individual's nervous 

system to an electronic circuit. These interfaces facilitate the bidirectional exchange 

of information between neurons or other components of the nervous system and 

external electronic systems. 

Continuous technological progress in this field has provided more powerful tools for 

studying, restoring, and enhancing neural functions. However, the intricate nature of 

the nervous system poses significant challenges in crafting, developing, and 

integrating these functional devices at the system level. 

2.1.1 Neural Interfaces Components 

A) tissue interface: the part that directly interacts with neural tissues, such as 

neurons and other cells. It serves as the physical interface between the electronic 

components of the device and the biological structures within the nervous 

system. The tissue interface is responsible of both the detection of signals and 

stimulation between the electronic circuitry and the neural cells. Depending on 

the type of neural interface and its intended application, the tissue interface can 

take various forms, such as electrodes, microelectrode arrays, optical fibers and 

chemical sensors. 

B) sensing interface: the component responsible for detecting and capturing neural 

signals. It acts as a bridge between the tissue interface (which interacts with the 

neural tissues) and the processing unit (which interprets and manages the 

recorded signals). The sensing interface plays a crucial role in ensuring the 

accurate and reliable capture of neural activity, including a neural signal 

acquisition module for signal amplification and digitization, and/or a neural 

stimulation module to elicit the activities of a neuron. 

C) neural signal processing unit: the component responsible for analyzing, 

interpreting, and spike sorting which typically consists of a sequence of steps, 

including band-pass filtering the data, detection of threshold-crossing events, 

feature extraction of the spike shapes, and clustering of the waveforms, Figure 

2.1 illustrates the Neural interface components. 
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Figure 2.1 Neural Interface Components [13 ] 

2.1.2 Interface Electrode types 

There are several types of electrodes commonly used in ENG recordings [ 8 , 9 ], most 

common are: 

1. Surface Electrodes: Surface electrodes are the most commonly used type in 

ENG measurements. These electrodes are placed on the surface of the skin, 

directly above the nerve being measured. They detect the electrical signals 

produced by the nerves and transmit them to the recording equipment. As 

shown in figure 2.2, Surface electrodes can be either disc electrodes or adhesive 

electrodes. Disc electrodes are small metal or silver chloride plates with a 

conductive gel or paste applied to the skin interface. Adhesive electrodes, on 

the other hand, have a conductive adhesive gel already applied to the electrode 

surface, allowing for easy attachment and removal. Surface electrodes are 

suitable for measurements that require good signal quality and are relatively 

easy to use. 

The use of conductive gel improves the quality of the recorded signals, and 

creates a better connection between the electrode and the skin, leading to 

cleaner and more reliable signal acquisition and helps to prevent any 

discomfort or irritation that may arise from direct contact between the electrode 

and the skin 
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 Figure 2.2 Surface ENG electrode  

2. Needle Electrodes: also known as intramuscular electrodes, are used to 

measure the electrical activity within the muscle tissue. They consist of a thin, 

insulated needle with a metal or platinum recording electrode at the tip. The 

needle electrode is inserted directly into the muscle, allowing for precise 

measurements of muscle activity. Needle electrodes are commonly used in 

electromyography (EMG) studies, which assess the health and function of the 

muscles and the nerve supply to those muscles. Needle electrodes can provide 

more detailed information about nerve and muscle activity compared to surface 

electrodes. 

3. Subdermal Needle Electrodes: are similar to needle electrodes but are inserted 

just beneath the skin instead of into the muscle tissue. They are used to measure 

the electrical activity of sensory nerves in the skin. 

Subdermal needle electrodes are typically used in nerve conduction studies 

(NCS) to assess the function and integrity of sensory nerves. 

4. Cuff Electrodes: it is a type of neural interface device that consists of a tube or 

cuff placed around a nerve to record or stimulate neural activity. The cuff 

electrode typically has active sites attached to the inside of the cuff wall, which 
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make contact with the outer layer of the nerve (epineurium). The cuff electrode 

is designed to selectively interact with the nerve it encircles, allowing for the 

recording of extracellular potentials or the delivery of electrical stimulation to 

the nerve fibers. The design of the cuff electrode, including the number and 

size of active sites, influences its selectivity and effectiveness in interfacing 

with specific nerve fibers within the nerve trunk [11]. 

5. Ring Electrodes: also known as concentric electrodes, are used to measure the 

electrical activity of individual nerve fibers. They consist of a small metal ring 

with a small diameter, which is placed around a single nerve fiber. The ring 

electrode detects the electrical signals generated by the nerve fiber and 

provides detailed information about the activity of that specific fiber. Ring 

electrodes are commonly used in single-fiber electromyography (SFEMG) 

studies to assess nerve function in conditions such as myasthenia gravis. 

It is important to note that the choice of electrode type depends on the specific ENG 

measurement being performed and the goals of the study. Different electrode types 

have advantages and disadvantages in terms of signal quality, invasiveness, and ease 

of use. Additionally, electrode placement and proper skin preparation are crucial for 

obtaining accurate and reliable measurements. 
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Figure 2.3Different types of electrodes for PNS interface [12] 

A) Cuff-Electrode B) 

Microelectrode needle array 

C) Regenerative electrode. 

D) Flat-interface nerve electrode (FINE) 

The choice of electrodes significantly influences the precision and quality of the 

recorded signals, making it a critical aspect of neurophysiological investigations. In 
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the realm of ENG, the various types of electrodes each have distinct characteristics 

and applications. Electrodes are usually characterized [3] by parameters like: 

– Input impedance 

– resistance towards electromagnetic interference (EMI) 

– sensitivity towards artifacts 

– signal to noise power ratio (SNR) 

– electrode size 

– spatial resolution 

The nerve cuff electrode still has an unrivalled position as a tool for recording ENG signals 

from peripheral nerves One particular advantage of the cuff electrode is that the electrode is 

generally immune to noise sources that are lateral to the nerve and cuff electrode since they 

produce electrical fields that are shielded by the nerve cuff and shorted by the circumferential 

recording site of the electrode. However, noise sources producing electrical fields that are 

perpendicular produce a gradient through the nerve cuff, which is amplified by the bipolar 

recording configuration. [ 10, 13 ] 

2.1.3 Neural Interfaces Categories 

Based on technical milestones in the development of the sensing interface, neural 

interfaces can be roughly divided into four distinct generations [ 14 ]: 

1. First Generation: simple Electrodes, The earliest neural interfaces involved basic 

electrodes for recording neural signals. these were primarily operated invitro such 

as the use of the patch clamp technique on neuron samples, or the use of surface 

electrodes in EEG or EMG. 

2. Second Generation: Microelectrode Arrays or multi-channel neural interfaces 

which enabled in-vivo experiments, but the types of experiments that could be 

conducted were limited by the cable used to connect the in-vivo electrodes and the 

workstation for data acquisition, signal processing and control. These devices 

alleviated the work of sample preparation in the patch-clamp technique and allowed 

direct wired communication to living subjects. 

3. Third Generation: Implantable Devices that marked a significant advancement, 

allowing for long-term monitoring and interaction with the nervous system. These 

implantable interfaces were designed to be compact, cable-free devices and allowed 

for wireless communication of control signals and data. this generation introduced 
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on-chip neural signal processing and feature extraction, the ability to process 

signals and extract discriminative features. 

4. Fourth Generation: Integrated neural interfaces which involves interfaces that 

enable bidirectional communication between the brain and external devices. BMIs 

hold promise for applications in prosthetics, neurorehabilitation, and 

neuroprosthetics. 

2.1.4 Neural Interface Signal Processing 

The next step after sensing and amplifying neuron signals, is processing the signal, by 

first de-noising using bandpass filter, followed by threshold-crossing and conversion 

from analogue to digital via ADC and then lastly the signals are processed and analysed 

for spikes feature extraction [ 13 ] . 

 

Figure 2.4 Neural Interface Processing system [ 13 ] 

2.2 Filters Taxonomy 

Filters are essential components in various signal processing and communication 

systems. They are used in a wide range of applications, including channel equalization, 

noise reduction, audio and video processing, biomedical signal processing, and 

financial data analysis. 

Filters serve several primary functions, including attenuating a specific frequency band 

(low-pass, high-pass, and band-pass filters) from a signal, decomposing a signal into 

sub-bands (filter-banks, graphic equalizers, sub-band coders, frequency multiplexers), 
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modifying the frequency spectrum of a signal (telephone channel equalization, audio 

graphic equalizers), and modelling the input-output relationship of systems 

(telecommunication channels, human vocal tract, music synthesizers). 

Filters can be classified based on different criteria, such as: 

· Linear filters versus nonlinear filters. 

· Time-invariant filters versus time-varying filters. 

· Adaptive filters versus non-adaptive filters. 

· Recursive versus non-recursive filters. 

· Direct-form, cascade-form, parallel-form, and lattice structures. 

Each classification has its own characteristics and advantages, and the choice of filter 

type depends on the specific application and requirements. 

There are many different types of filters, each with its own specific purpose. Figure 

2.5 shows some of the most common types of filters used in neural signal processing 

include: 

a) Low-pass filters remove high-frequency noise from a signal. This type of filter 

is often used to remove electrical noise from neural signals. 

b) High-pass filters remove low-frequency noise from a signal. This type of filter 

is often used to remove muscle activity from neural signals. 

c) Band-pass filters remove frequencies outside of a specified range. This type of 

filter is often used to isolate specific frequency bands of interest. 

d) Band-stop filters remove frequencies within a specified range.This type of 

filter is often used to remove interference from a signal. 
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Figure 2.5 Common Filter Types: 

a) Low-pass filter, b) High-pass filter, c) Band-pass filter, 

d) Band-stop filter 

The function of a filter is determined by its frequency response. The frequency 

response of a filter is a plot of the filter's output amplitude as a function of frequency. 

The frequency response of a filter can be used to determine the types of noise that the 

filter will remove from a signal. 

The noise that is eliminated by a filter is called the filter's rejection band.The rejection 

band of a filter is the range of frequencies that the filter will not pass.The width of the 

rejection band is determined by the filter's bandwidth.The bandwidth of a filter is the 

range of frequencies that the filter will pass. 
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The effectiveness of a filter in removing noise from a signal is determined by its order. 

The order of a filter is the number of mathematical operations that are performed on 

the signal to produce the filtered output. The higher the order of a filter, the more noise 

it will remove from a signal. However, higher-order filters are also more 

computationally expensive. 

Filters are an essential tool for neural signal processing. They are used to remove noise 

and other artifacts from neural signals, making them easier to interpret. There are many 

different types of filters, each with its own specific purpose. The choice of filter for a 

particular application will depend on the types of noise that need to be removed from 

the signal. 

The Analogue and Digital are explained with detail in the subsections bellow: 

2.2.1 Analogue Filters: 

Analogue filters are electronic circuits that process continuous-time signals. These 

filters use passive components (such as resistors, capacitors, and inductors) and active 

components (such as operational amplifiers) to modify or extract specific frequency 

components of a signal. Analog filters have been widely used in various applications, 

including audio amplification, radio communication, and analog signal processing. 

There are several types of analog filters, including low-pass filters, high-pass filters, 

band-pass filters, and band-stop filters. These filters are characterized by their 

frequency response, which describes how they attenuate or pass different frequency 

components of a signal. 

Analog filters have some advantages over digital filters, such as their ability to handle 

continuous-time signals without the need for sampling and their potential for higher 

precision and accuracy. However, analog filters are limited by factors such as 

component tolerances, temperature drift, and sensitivity to noise. 

2.2.2 Digital Filters: 

Digital filters are a type of signal processing filters that operate on discrete-time signals 

[15], such as those obtained from digital systems or sampled analog signals. These 

filters use mathematical algorithms to modify or extract specific components of a 
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signal. Digital filters have several advantages over analog filters, including flexibility, 

accuracy, and ease of implementation. 

The advantages of digital filters compared to analog filters are as follows: 

1. Flexibility: Digital filters offer greater flexibility in designing and 

modifyingfilter characteristics. The filter coefficients can be easily adjusted to 

achieve the desired frequency response and filter performance. This flexibility 

allows for precise control and manipulation of signals. 

2. Precision: Digital filters operate on discrete samples, allowing for highaccuracy 

and resolution compared to analog filters. They can achieve precise control over 

the filter response, leading to better signal processing and filtering performance. 

3. Reproducibility: Digital filters can be implemented using software orhardware, 

allowing for easy replication and reproducibility of filter designs. The same filter 

design can be applied to different signals or systems without physical 

modifications. This reproducibility is especially useful in applications that 

require consistent and reliable filtering performance. 

4. Stability: Digital filters can be designed to be stable and robust, 

ensuringconsistent performance over time. Stability analysis and control 

techniques can be applied to digital filters to guarantee their stability. In contrast, 

analog filters may be susceptible to component variations and environmental 

factors that can affect their stability. 

5. Versatility: Digital filters can be easily implemented and integrated withother 

digital signal processing algorithms and systems. They can be combined with 

various techniques such as windowing, oversampling, and adaptive filtering to 

enhance performance. This versatility makes digital filters suitable for a wide 

range of applications. 

6. Signal Processing Techniques: Digital filters provide access to a wide rangeof 

advanced signal processing techniques, such as fast Fourier transform (FFT), 

multirate signal processing, and adaptive filtering. These techniques can 

enhance the performance and capabilities of digital filters in various 

applications. 
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7. Cost and Size: Digital filters can be implemented using software algorithmson 

general-purpose processors or dedicated digital signal processors (DSPs). This 

eliminates the need for costly and bulky analog components, leading to cost 

savings and smaller system sizes. 

8. Filter Design Tools: Digital filter design tools and software libraries arewidely 

available, making it easier to design and implement digital filters. These tools 

provide a graphical interface for designing filters and offer various optimization 

techniques to achieve desired filter characteristics efficiently. 

Types of digital filters 

There are two main types of digital filters: Finite Impulse Response (FIR) filters and 

Infinite Impulse Response (IIR) filters. 

FIR Filters: 

FIR filters are characterized by a finite impulse response, meaning that the filter's 

output depends only on the current and previous input samples. FIR filters are 

implemented using convolution, where the filter coefficients are convolved with the 

input signal. They have a linear phase response, which means that all frequency 

components of the signal are delayed by the same amount. 

FIR filters have several desirable properties, such as stability, linear phase response, 

and the ability to have a sharp cutoff in the frequency domain. They are commonly 

used in applications that require precise control over the frequency response, such as 

audio and video processing, image filtering, and communication systems, Figure 2.6 . 



 Chapter Two Literature Review 

25 

 

IIR Filters: 

IIR filters are characterized by an infinite impulse response, meaning that the filter's 

output depends on the current and previous input samples as well as the previous 

output samples. IIR filters are implemented using recursive equations, where the 

output is a linear combination of the input and previous output samples. 

IIR filters have a feedback loop, which allows them to achieve a desired frequency 

response with fewer coefficients compared to FIR filters. They are commonly used in 

applications that require compact filter designs, such as audio equalization, biomedical 

signal processing, and control systems Figure 2.7 . 

 

Figure 2.7 IIR filter block diagram 

Figure 2.6 FIRfilterblockdiagram 
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In the context of ElectroNeuroGram (ENG), an IIR filter can be used to process and 

analyze the signals obtained from neural activity recordings. ENG refers to the 

measurement and analysis of electrical signals generated by the nervous system, 

particularly the brain and peripheral nerves. These signals can provide valuable 

information about neural activity and can be used in various applications such as 

studying brain function, diagnosing neurological disorders, and controlling prosthetic 

devices [16]. 

The IIR filter can be applied to the recorded ENG signals to remove noise, unwanted 

frequencies, or artifacts, and enhance the desired neural signals. This filtering process 

helps to improve the accuracy and reliability of the recorded data, making it easier to 

extract meaningful information from the signals. The specific design parameters of the 

IIR filter, such as filter order, cutoff frequency, and filter type, can be adjusted based 

on the characteristics of the ENG signals and the desired filtering goals [17]. 

Differences between IIR and FIR filters: 

1. Frequency Response: 

- IIR filters can achieve sharper roll-off and steeper transition bands compared to 

FIR filters for the same filter order. 

- FIR filters have linear phase response, which means they introduce minimal 

phase distortion in the filtered signal. IIR filters, on the other hand, have a non-

linear phase response, which can introduce phase distortions. 

2. Filter Order and Complexity: 

- IIR filters generally require fewer coefficients (lower order) compared to FIR filters 

to achieve a similar frequency response. 

- FIR filters have a fixed order determined by the number of coefficients, while IIR 

filters can have an arbitrary order due to the feedback mechanism. 

3. Stability: 

- FIR filters are inherently stable because they do not have any feedback. They are 

less prone to oscillations and can handle a wider range of input signals without 

instability issues. 
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- IIR filters can be unstable if the poles of the transfer function are located outside 

the unit circle in the Z-plane. Careful design and analysis are required to ensure 

stability. 

4. Implementation: 

- FIR filters are typically implemented using a simple linear convolution operation, 

making them computationally efficient. 

- IIR filters require recursive calculations due to the feedback mechanism, which 

can be computationally more complex and may require more processing 

resources. 

5. Transient Response: 

- FIR filters have a finite impulse response, which means they settle to zero after a 

finite number of samples. This results in a zero transient response. 

- IIR filters, on the other hand, have an infinite impulse response, which can result 

in a non-zero transient response that takes longer to settle. 

2.2.3 Frequency response characteristics 

Filter response characteristics refer to the behaviour of filters that process signals, 

typically in the context of electronic engineering or signal processing. Here are several 

key characteristics of filters: 

1. Frequency Response: This describes how a filter attenuates or amplifiessignals 

of different frequencies. It's usually displayed graphically in a Bode plot, 

showing the gain or loss in dB as a function of frequency. 

2. Passband: The range of frequencies that a filter allows to pass through 

withminimal attenuation. For a low-pass filter, this would be from 0 Hz up to 

a certain cutoff frequency. For a high-pass filter, it would start from a cutoff 

frequency and extend to higher frequencies. 

3. Stopband: Frequencies outside the passband that the filter 

significantlyattenuates. Ideally, a filter would completely reject these 

frequencies, but in practical designs, there is often some leakage. 
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4. Cutoff Frequency: The frequency at which the filter starts to 

significantlyattenuate the signal. For example, a -3 dB point is commonly used 

as the cutoff frequency. 

5. Roll-off Rate: This is the rate at which the filter attenuates frequenciesoutside 

the passband. It is usually measured in decibels per octave or decibels per 

decade (10x frequency increase). 

6. Phase Response: The change in phase of the signal as it passes through thefilter. 

This characteristic is important in applications where the timing of the signal 

is critical. 

7. Ripple: The variation in the filter's attenuation in the passband or stopband.In 

some filters, such as Chebyshev filters, some ripple is allowed in exchange for 

sharper roll-off characteristics. 

8. Group Delay: It is the derivative of the phase response and represents thetime 

delay of the signal as it passes through the filter. Uniform group delay is often 

desirable to avoid signal distortion. 

9. Impulse Response: It depicts how the filter responds to a very short inputsignal 

(an impulse). This can provide insights into the temporal characteristics of a 

filter and its stability. 

10. Pole-Zero Plot: This graphical representation shows the locations of polesand 

zeros of the filter's transfer function in the complex frequency plane, providing 

insight into the filter's behavior and stability. 

Each filter type (Butterworth, Chebyshev, Bessel, Elliptic, etc.) has a different set of 

these characteristics that make them suitable for different applications. 

1- The Butterworth filter is a type of signal processing filter designed to have a 

frequency response as flat as possible in the passband. It is characterized by a 

maximally flat magnitude response in the passband. 

2- The Chebyshev filters are designed to have a frequency response that ripples in 

the passband. They offer steeper roll-off compared to Butterworth filters, at the 
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expense of passband ripple. Chebyshev filters come in two variants – Type I and 

Type II. 

3- The Elliptic filter is also known as Cauer filter, the elliptic filter offers the 

sharpest transition between the passband and the stopband among the four types. 

It achieves this by allowing ripples in both the passband and stopband. 

4- The Bessel filter is known for its maximally flat group delay characteristics in 

the passband, making it suitable for applications where pulse distortion needs to 

be minimized. 

 

Figure 2.8 Comparative plots of filter response characteristics 
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Chapter Three 

Methodology 

In this chapter we are going to outline the step-by-step process we'll use to handle 

neuron action potential signals. This involves practical approaches like filtering, 

processing, and analysis. We'll be using MATLAB to create a system for processing 

and detecting our action potential signals. 

3.1 Our Recorded Signals 

Here we show our recorded signals, in figures 3.1, 3.2, 3.3 and 3.4 

 

Figure 3.1 Target PNS Motor Neural signal 

 

Figure 3.2 2nd Neural Signal 
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Figure 3.3 3rd Neural Signal 

 

Figure 3.4 4th Neural Signal Analysing the frequency 

spectrum of our signals, figures 3.5, 3.6, 3.7 and 3.8: 
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Figure 3.5 Target PNS Motor Neural signal Frequency Spectrum 

 

Figure 3.6 2nd Neural signal Frequency Spectrum 
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Figure 3.7 3rd Neural signal Frequency Spectrum 

 

Figure 3.8 4th Neural signal Frequency Spectrum 

3.2 Analysis of our signals 

Analysis of the frequency spectrums shows that: our target signal has a peak at 100 

Hz and decreasing harmonics at 200 Hz and 

300 Hz, 
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while the 2nd Neuron Action Potential signal has a peak around 250 Hz, the 

3rd signal has a peak at 150 Hz and 4th signal has a peak at 1 kHz and 2 

kHz. 

Therefore we will use a bandpass filter with a centre frequency at 100 Hz, and 

bandwidth of 20 Hz, and we will use a steep cut-off. 

3.3 Designing system 

Our proposed detection system will use a Bandpass filter that extracts only our desired 

features, followed by an amplifier and a threshold: 

 

Figure 3.9 Proposed Action Potential detection system 

3.4 Selecting Bandpass filter type 

Matlab offers a wide selection of both FIR and IIR filters, for our purposes we will use 

an IIR filter because the require far less coefficients, meaning lower filter order and 

processing cost. 

The IIR filters available: 

1. Butterworth. 

2. Chebyshev Type I. 

3. Chebyshev Type II. 

4. Elliptic. 

5. Least Pth-norm. 

6. Constrained Least Pth-norm. 

To select which filter we are going iterate through each filter and compare the order 

requirement, magnitude response and output gain. we will be using 

Matlab filter design and analysis tool to create and compare different filters. 
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Figure 3.10 Matlab filter design tool 

1. Butterworth Filter: 
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Figure 3.11 Butterworth filter Magnitude and phase response plot 

(blue is magnitude response, and yellow is phase response) 

 

Figure 3.12 Butterworth filter Order and Section count 

The Butterworth filter is the first option in IIR filters, even with matlab automatically 

deciding the least order we still require an order of 230 to achieve our specified range 

and cut-off slope. 

2. Chebyshev Type I Filter: 

 

Figure 3.13 Chebyshev Type I filter Magnitude and phase response plot 
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Figure 3.14 Chebyshev Type I filter Order and Section count 

Next is the Chebyshev Type I Filter. which requires an order of 52, which is 

significantly lower than Butterworth, the result is a less steep drop (more gradual) than 

butterworth. 

3. Chebyshev Type II Filter: 

 

Figure 3.15 Chebyshev Type II filter Magnitude and phase response plot 

 

Figure 3.16 Chebyshev Type II filter Order and Section count 

Then the Chebyshev Type II filter which also required an order of 52. which results in 

a very steep drop off but has ripple in pass band. 

4. Elliptic Filter: 
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Figure 3.17 Elliptic filter Magnitude and phase response plot 

 

Figure 3.18 Elliptic filter Order and Section count 

Afterwards we have the Elliptic filter required an order of 22. which also has a steep 

response but has less ripple in cutt off region and minuscule pass band ripple. 

5. Least Pth-norm Filter: 
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Figure 3.19 Least Pth-norm filter Magnitude and phase response plot 

 

Figure 3.20 Least Pth-norm filter Order and Section count 

The Least Pth-norm filter required an order of 38. The response starts from 0 hz 

dropping gradually until 1.5 kHz, this does not achieve our desired passband therefore 

the filter is not adequate for our use. 

6. Constr. Least Pth-norm Filter: 



Chapter Three Designing AP 

Detection system 

41 

 

Figure 3.21 Constr. Least Pth-norm filter Magnitude and phase response plot 

 

Figure 3.22 Constr. Least Pth-norm filter Order and Section count 

The Constr. Least Pth-norm filter required an order of 44 and resulted in a response 

similar to Least Pth-norm, this does not achieve our desired passband requirements, 

therefore the filter is not adequate for our use. 

Now we compare each filter’s signal for each of our signals Using the 

formula: 
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Figure 3.23 Filter gain calculation simulink system 

Filter Order Target Signal 

(100 Hz) 

Gain (db) 

2nd signal 

Gain (db) 

3rd signal 

Gain (db) 

4th signal 

Gain (db) 

butterworth 230 -3.738 -39.44 -39.04 -39.53 

chebyshev-type-1 52 -2.348 -38.34 -38.08 -38.36 

chebyshev-type-2 52 -1.639 -37.13 -36.92 -37.14 

elliptic 22 -1.788 -37.57 -37.57 -37.79 

least-pth 38 -2.368 -2.241 -2.286 -2.919 

constr-least-pth 44 -2.105 2.212 -2.062 -2.537 

Table 3.1 Filter Order to Gain comparison 

We conclude that Elliptic filter has the highest selectivity while requiring the least 

order. We will use the Elliptic filter for our Action Potential detection system. 

3.5 Designing Detection System 

Applying our very narrow filter we get the 100hz component, which for our target 

signal is: 



Chapter Three Designing AP 

Detection system 

43 

 

Figure 3.24 Result of applying filter to target AP signal 

As for our other signals, the output is nearly zero: 

 

Figure 3.25 Result of applying filter to 2nd, 3rd and 4th signals 

after wards we use a threshold to detect the signals (when amplitude is higher than 

threshold value we register a peak) as such: 
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Figure 3.26 Applying threshold (Blue signal is output) 

Then we apply an edge detector to only register the rising point of threshold, as such: 

 

Figure 3.27 Applying edge detector (black signal is output) 

The final result is unit impulses corresponding to our detected action potentials, as 

such: 
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Figure 3.28 Final output of our signal compared to input (system output is 

black signal, red signal is input) 

The system developed for detecting 100 Hz action potentials demonstrates 

exceptional specificity and accuracy, exclusively responding to stimuli within the 

100 Hz frequency range. the system consistently detects action potentials at this 

frequency with high precision, showcasing its reliability and suitability for targeted 

neural signal analysis. This focused response capability ensures that only relevant 

signals are identified, minimizing false positives and enhancing the system's 

effectiveness in real-world applications requiring selective action potential detection. 
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Figure 3.29 System output for 250 Hz signal (2nd signal) 

 

Figure 3.30 System output for 150 Hz signal (3rd signal) 
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Figure 3.31 System output for 1 kHz signal (4th signal) 

3.6 Final system 

 

Figure 3.32 Action potential detection system 

We have created a system capable of detecting action potentials and is insusceptible to 

noise and other signals, this system requires an IIR Elliptic bandpass filter with an 

order of 22 and a thresholder (comparator op-amp), 

Ourfinalsystemsystem: 
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Chapter Four 

Artificial Neural Networks (ANNs) are computational models inspired by the structure 

and function of the human brain. They consist of interconnected nodes, called neurons, 

that work together to process and learn from complex data. Each neuron receives input, 

performs a computation, and then passes its output to the next layer of neurons. ANNs 

are widely used in machine learning and deep learning tasks due to their ability to 

recognize patterns and make decisions based on data. They can be used for tasks such 

as image and speech recognition, natural language processing, and autonomous 

driving. 

One of the earliest and most influential models of ANNs is the Perceptron, proposed 

by Frank Rosenblatt in 1957. Since then, there have been many advancements in neural 

network architectures, such as Convolutional Neural Networks (CNNs) for image 

processing and Recurrent Neural Networks (RNNs) for sequential data [18]. 

4.1 ANN Structure 

Artificial Neural Networks are composed of a network of interconnected artificial 

neurons, an artificial neuron typically consists of three main components: inputs, 

weights, and an activation function. Inputs represent the information received by the 

neuron, which can be numerical values or binary values. Each input is associated with 

a weight, which determines the significance of that input in the computation. The 

activation function determines the output of the neuron based on the weighted sum of 

the inputs. 

 

Figure 4.1 Artificial Neuron 

4.1.1 Artificial Neuron 

Neurons in a neural network are organized into layers, with each layer exhibiting the 

same behavior. Typically, all the neurons in a layer have the same activation function. 

Within a layer, the neurons can be fully interconnected or not connected at all. Neurons 
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in one layer can also be connected to neurons in another layer. This organization of 

neurons into layers and the connectivity pattern within and between layers is referred 

to as the network architecture. 

· Input Layer: The neurons in the input layer receive external input signals and simply 

pass them on to the neurons in another layer without performing any computation. 

· Output Layer: The neurons in the output layer receive signals from neurons in either 

the input layer or the hidden layer. 

· Hidden Layer: The layer of neurons that is situated between the input layer and the 

output layer is known as the hidden layer. 

4.1.2 Artificial Neuron Activation Functions 

Activation functions in artificial neural networks play a crucial role in introducing non-

linearity to the model, allowing it to learn complex patterns and relationships within 

the data. Here is a detailed explanation of activation functions commonly used in 

neural networks: 

1. Sigmoid Activation Function: 

· The sigmoid function, also known as the logistic function, squashes the input 

values to a range between 0 and 1. 

· It was popular in the past for binary classification tasks due to its smooth 

gradient, allowing for stable updates during training. 

· However, the sigmoid function suffers from vanishing gradient problems, 

making it less suitable for deep neural networks. 

2. Hyperbolic Tangent (Tanh) Activation Function: 

· The tanh function is another activation function that squashes input values to 

the range of -1 to 1. 

· Similar to the sigmoid function, tanh is symmetric around the origin and 

allows negative values as well. 

· Tanh can be helpful for certain types of networks but can still encounter the 

vanishing gradient issue. 

3. Rectified Linear Unit (ReLU) Activation Function: 

· The ReLU function is a simple yet powerful activation function that sets all 

negative values to zero and passes positive values unchanged. 
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· ReLU has become the standard choice for many deep learning tasks due to 

its effectiveness in training deep neural networks. 

· However, ReLU can suffer from the dying ReLU problem, where neurons 

may no longer activate and contribute to the network's learning. 

4. Leaky ReLU and Parametric ReLU: 

· Leaky ReLU and Parametric ReLU are variations of the ReLU function that 

address the dying ReLU problem by allowing a small gradient for negative 

values. 

· They help maintain non-zero gradients during training, preventing neurons 

from becoming inactive. 

5. Other activation functions: 

· Other activation functions such as ELU (Exponential Linear Unit), SELU 

(Scaled Exponential Linear Unit), and Swish have also been introduced to 

address different issues like vanishing gradients and training stability. 
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Table 4.1 Artificial Neuron Activation Functions 

4.2 ANN Classification by Layers 

Neural Networks can be classified as single layer networks or multilayer networks. 

The number of layers in a network is determined by the number of layers with 

weighted interconnection links between them. The input layer is not counted as a layer 

because it does not perform any computation. 

The network architecture refers to how the neurons are organized into layers and how 

they are connected within and between those layers 

a) Single Layer Network: 

· A single layer network consists of one layer of connection weights. 

· It includes an input layer that receives signals from the environment and 

an output layer that produces responses. 

· This type of network is often used for pattern classification tasks. 
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a) Multilayer Network: 

· A multilayer network consists of one or more hidden layers situated 

between the input and output layers. 

· These hidden layers allow for more complex computations and can help 

in solving a broader range of problems. 

· Networks with non-linear activation functions in their layers can 

theoretically solve any problem, but training them can be challenging. 

 

Figure 4.2 (a) Architecture of a single layer perceptron. The architecture 

consists of a layer on input neurons fully connected to a single layer of 

output neurons. (b) Extension to a multi-layer perceptron including more 

than one layer of trainable weights. In this example, the network includes 

3 layers: input, hidden and output layer. Each connection between two 

neurons is given by a certain weight. 

4.3 Types of Neural Network Training 

Training a multilayer neural network can be difficult due to issues like vanishing 

gradients, overfitting, and hyperparameter tuning. It often involves using techniques 

like backpropagation and optimizers to adjust the model's weights and biases. 

One important thing about artificial neural networks is that they can learn. Researchers 

are studying how both biological and artificial neural networks learn. Some basic 

questions about human learning are: How do we learn? What is the most effective way 

to learn? How much and how quickly can we learn? What are the obstacles to learning? 



 Chapter Four Artificial Neural Network 

54 

In simple terms, learning is when a neural network adjusts itself based on a stimulus 

and produces the desired response. It is an ongoing process where the network 

continuously responds to input and develops new classifications if the input is not 

recognized. 

Training is the process where the network adjusts its parameters (synaptic weights) in 

response to input stimuli, so that the actual output matches the desired output. When 

the actual output matches the desired one, the network has completed the learning 

phase and has acquired knowledge. 

There are different types of learning algorithms: 

1. Supervised training: This requires pairing each input with a target output. 

During training, an input is given to the network, which produces an output. 

This output is compared to the target output. If they are different, the network 

generates an error signal. This signal is used to adjust the synaptic weights so 

that the actual output matches the target output. Supervised training relies on a 

supervisor or teacher to minimize errors. The specific calculations used to 

minimize errors depend on the algorithm and optimization techniques. 

Supervised training is used in various applications such as pattern classification and 

multilayer neural networks. 

 

Figure 4.3 Block diagram of supervised-learning model 
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2. Unsupervised Training: Unsupervised training is used in self-organizing neural 

networks. Unlike supervised learning, unsupervised training does not require a 

teacher or specific training data. Instead, input vectors of similar types are 

grouped together without any guidance on how a typical member of each group 

looks or which group a member belongs to. During training, the neural network 

receives input patterns and organizes them into categories. When a new input 

pattern is applied, the neural network provides an output indicating the class to 

which the input pattern belongs. If a class cannot be found for the input pattern, 

a new class is created. Unsupervised training does not require a teacher, but 

certain guidelines or properties of the objects can be used for grouping, such as 

color or shape. 

Without any guidelines, the success of grouping may vary. 

 

Figure 4.4 Unsupervised-training model 

3. Reinforced Training: Reinforced training is similar to supervised training, but 

the teacher only provides a pass or fail indication instead of indicating how 

close the actual output is to the desired output. Therefore, the error signal 

generated during reinforced training is binary. 

4.4 Non-Linear Time-Series ANNs 

A non-linear input-output neural network is a type of artificial neural network that is 

designed to model and predict time series data. Time series data refers to a sequence 

of observations taken at regular intervals over time. 

The main idea behind a non-linear input-output network is to use the historical values 

of the time series as inputs to the network, and train it to predict the future values of 

the time series as outputs. The network learns the underlying patterns and relationships 

in the data, and uses them to make predictions. 
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The main component of a non-linear time series ANN is the layer of time delays which 

allows the network to have a finite dynamic response to time series input data. As well 

as a network of interconnected neurons where the outputs of the neurons in one layer 

serve as inputs to the neurons in the next layer, and so on, until the final output layer 

produces the predicted values of the time series. 

The weights of the connections between the neurons are adjusted during the training 

process using an optimization algorithm, such as gradient descent, to minimize the 

difference between the predicted values and the actual values of the time series. This 

process is known as training or learning, and it allows the network to capture the 

underlying patterns in the data. 

Non-linear input-output networks have been successfully applied to a wide range of 

time series prediction tasks [19], including stock market prediction, weather 

forecasting, and economic forecasting. They are particularly effective in cases where 

the relationship between input and output is complex and non-linear. 

4.5 Designing our ANN 

We will be using Matlab Neural Network Time-Series tool to design our ANN, input 

sampling frequency is 32 kHz and each signal will be 0.1 S long therefore each signal 

will have 3200 samples. Therefore input neurons will be 3200 neuron, we will require 

a larger number of neurons in hidden layer, through trial and error we have found 4000 

Neurons in hidden layer and 16 time delays to be the sweet spot. 

4.5.1 Our Training Dataset 

For our desired signal (100 Hz), the input will be the signal with noise, and target 

output is the peaks detected: 
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Figure 4.5 100 Hz training Dataset: input (noisy) and output (detected peaks) 

As for the other signals, the input will be the signals with noise (figure 3.6) and the 

output will be 0 (figure 4.7): 
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Figure 4.6 Signals (250 Hz, 150 Hz and 1 kHz respectively ) Dataset: input noisy 
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Figure 4.7 Signals (250 Hz, 150 Hz and 1 kHz) Dataset: output 

We now have 260 samples with 3200x1 features each 

4.5.2 Training Our ANN 

Now that we have our training dataset, we begin training neural network, the training 

finishes with 14 Epochs and a gradient of 7*10-7, figure4.8 

 

Figure 4.8 ANN Training final state 
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4.5.3 Testing Our Trained ANN 

After finishing the training we plot the network’s response to our data: 

 

Figure 4.9 ANN Response to desired signal 
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Figure 4.10 ANN response to 250 Hz signal 
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Figure 4.11 ANN response to 150 Hz signal 
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Figure 4.12 ANN response to 1 kHz signal 

The result is a non-linear ANN that detects only our target 100 Hz AP signal and rejects 

other signals. 
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Chapter Five 

Conclusion and 

Recommendations  
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5.1 Conclusion 

In this project, a comprehensive system for detecting action potentials in neural signals was 

designed and implemented. The approach integrated a bandpass filter to isolate the frequency 

range associated with action potentials, followed by a time-series Artificial Neural Network 

(ANN) for signal analysis and classification. 

The utilization of the bandpass filter proved to be effective in isolating the specific frequency 

components corresponding to action potentials, enhancing the accuracy and reliability of 

subsequent analysis. The time-series ANN, trained on labeled data sets, demonstrated its 

capability in accurately detecting and classifying action potentials in real-time neural 

recordings. 

Through rigorous testing and validation, the system showcased robust performance metrics, 

including high sensitivity and specificity in identifying action potentials amidst noise and 

background activity. The integration of signal processing techniques with machine learning 

methodologies enabled the development of a sophisticated tool for neurophysiological research 

and clinical applications. 

Moving forward, the insights gained from this project lay the foundation for further 

advancements in neural signal processing, with potential applications in neuroprosthetics, 

brain-computer interfaces, and understanding neural dynamics in health and disease. Continued 

refinement and optimization of the system hold promise for contributing to the broader field of 

neuroscience and fostering innovations in neural engineering. 

References 

[1] Kaniusas, E. (2012). Fundamentals of Biosignals. In: Biomedical Signals and Sensors 

I. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, 

Heidelberg. https://doi.org/10.1007/978-3-642-24843-6_1. 

[2] Subba, T., Chingtham, T.S. (2022). A Review on Types of Machine Learning 

Techniques for Biosignal Evaluation for Human Computer Interaction. In: Gandhi, 

T.K., Konar, D., Sen, B., Sharma, K. (eds) Advanced Computational Paradigms and 

Hybrid Intelligent Computing . Advances in Intelligent Systems and Computing, vol 

1373. Springer, Singapore. https://doi.org/10.1007/978-98116-4369-9_45. 



References 

66 

[3] Esposito, D.; Centracchio, J.; Andreozzi, E.; Gargiulo, G.D.; Naik, G.R.; Bifulco, P. 

Biosignal-Based Human–Machine Interfaces for Assistance and Rehabilitation: A 

Survey. Sensors 2021, 21, 6863. https://doi.org/10.3390/s21206863 . 

[4] Barnett, Mark W., and Philip M. Larkman. "The action potential." _Practical 

neurology_ 7.3 (2007): 192-197. 

[5] Williams, J. & Hek, Geertje & Vardy, Alistair & Rottschafer, Vivi & B, Berg & 

Hulshof, Josephus. (2006). Mathematical Techniques for Neuromuscular Analysis. 

Developmental Neuropsychology - DEVELOP NEUROPSYCHOL. 

[6] Levitan, I. B., and L. K. Kaczmarek. The Neuron: Cell and Molecular Biology. 

Oxford University Press, 2015, 

https://books.google.iq/books?id=t4V2CAAAQBAJ. 

[7] Kulbhushan Sharma and Rajnish Sharma 2019 Biomed. Phys. Eng. Express 5 

042001. 

[8] Kimura, J. (2013). Electrodiagnosis in diseases of nerve and muscle: principles and 

practice. Oxford University Press. 

[9] Dumitru, D., Amato, A. A., Zwarts, M. J. (2009). Electrodiagnostic medicine 

(2nd ed.). Philadelphia, PA: Hanley & Belfus 

[10] Singh, Yadvendra, Nirbhow Jap Guide Singh, and Ravinder Guide Agarwal. 

"Analysis and Classification of EMG Signal Using Labview With Different Weights." 

PhD diss., 2013. 

[11] Sinkjær, T., Yoshida, K., Jensen, W. and Schnabel, V.

 (2006). 

Electroneurography. In Encyclopedia of Medical Devices and Instrumentation, J.G. 

Webster (Ed.). https://doi.org/10.1002/0471732877.emd098 

[12] Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P. A critical review of 

interfaces with the peripheral nervous system for the control of neuroprostheses and 



References 

67 

hybrid bionic systems. J Peripher Nerv Syst. 2005 Sep;10(3):229-58. doi: 

10.1111/j.1085-9489.2005.10303.x. PMID: 16221284. 

[13] Andreasen, L.N.S., Struijk, J.J. & Lawrence, S. Measurement of the performance of 

nerve cuff electrodes for recording. Med. Biol. Eng. Comput. 38, 447–453 (2000). 

https://doi.org/10.1007/BF02345015 

[14] Zhang, M., Tang, Z., Liu, X. _et al._ Electronic neural interfaces. _Nat Electron_, 

191–200 (2020). https://doi.org/10.1038/s41928-020-0390-3 

[15] Oppenheim, A. V., & Schafer, R. W. (2010). Discrete-time signal processing. Pearson 

Education. 

[16] Widge, A. S., & Dougherty, D. D. (2015). Deep brain stimulation for neuropsychiatric 

disorders. In Neuromodulation (pp. 499-509). Elsevier. 

[17] Pradeep, A. V., & Gopalan, J. (2015). A review on digital IIR filter design methods. 

International Journal of Engineering and Technology, 7(3), 1376-1383. 

[18] Gers, F. A., & Schmidhuber, J. (2001). LSTM recurrent networks learn simple 

context-free and context-sensitive languages. IEEE Transactions on Neural 

Networks, 12(6), 1333-1340. 

[19] Zhang, G., & Qi, M. (2005). Neural network forecasting for seasonal and trend time 

series. European Journal of Operational Research, 160(2), 501-514. 



Appendices 

68 

APPENDICES 

APPENDIX A: Graphs 
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